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Abstract 
 

Incorporating information regarding the gut microbiota into psychobiological research promises 

to shed new light on how individual differences in brain and cognitive development emerge. 

However, the investigation of the gut-brain axis in development is still in its infancy and poses 

several challenges, including data analysis. Considering that the gut microbiome is an eco-

system containing millions of bacteria, one needs to utilize a breadth of methodologies and data 

analytic techniques. The present review serves two purposes. First, this review will inform 

developmental psychobiology researchers about the emerging study of the gut-brain axis in 

development and second, this review will propose methodologies and data analytic strategies for 

integrating microbiome data in developmental research.   
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A primer on investigating the role of the microbiome in brain and cognitive development 

Within the human body, microorganisms, collectively called the microbiome, outnumber 

our own human body cells (Greenhalgh, Meyer, Aagaard, & Wilmes, 2016; Walker, 2013). In 

the gut microbiome alone, there are more than 1000 species that encode 200 times as many genes 

as the entire human genome (D’Argenio & Salvatore, 2015). This new knowledge about the 

human microbiome challenges existing views in multiple disciplines beyond biology, including 

concepts about the individual nature of the self (Rees, Bosch, & Douglas, 2018). Moreover, 

incorporating questions about the influence of the microbiome into research programs has the 

potential to significantly change the scientific landscape. The gut microbiome is thought to play 

a crucial role in everyday physiological functioning; and yet, relatively little is known about its 

specific contributions to health and disease (D’Argenio & Salvatore, 2015). With the emergence 

and improvement of next-generation genetic sequencing technology in recent years, the study of 

the microbiome has become feasible and more affordable. This increased access has kick-started 

large-scale scientific efforts to map the human microbiome, such as the Human Microbiome 

Project, funded by the National Institutes of Health (https://commonfund.nih.gov/hmp). These 

and future research efforts will help to uncover the role of the microbiome in human health and 

disease. 

Given these advances in mapping the human microbiome, there is also growing interest 

in investigating how the microbiome affects developmental processes, specifically, brain and 

cognitive development (Borre et al., 2014; Carlson et al., 2018). Adding approaches that enable 

the study of gut microbiota to the developmental scientist’s toolkit promises to shed new light on 

how individual differences psychological processes emerge. However, the investigation of how 

the gut-brain axis influences development is still in its infancy and poses several challenges, 
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including data analysis strategies. Considering that the gut microbiome is an eco-system 

containing millions of bacteria, applying traditional data analysis strategies is thus of limited use. 

The goals of the current review are: 1) to review the existing research investigating the role of 

the gut microbiome in brain and cognitive development, and 2) to provide an overview of 

research methodology and data analytic approaches utilized in the study of how the microbiome 

influences brain and cognitive development. 

Investigating the gut-brain axis using animal models 

A host of experimental evidence for the influence of the gut microbiome on brain 

development comes from animal studies comparing germ-free mice to conventional mice reared 

in a pathogenic-free environment (Heijtz et al., 2011). Germ-free mice do not have a 

microbiome, meaning that they are bacteria-, fungi-, and virus- free. These mice are created and 

maintained through specialized husbandry procedures, including birth through cesarean section 

and housing in sterile environments (Faith et al., 2010; Stilling, Dinan, & Cryan, 2014). 

Pathogen-free mice are reared through the most common husbandry practices, which includes 

screening to ensure that they are free from a specific list of disease-causing agents that would 

interfere with mouse health. In contrast to germ-free mice, pathogen-free mice are housed in 

bacteria-rich environments and maintain a diverse microbiome.  

Germ-free mice exhibit marked physiological and behavioral differences from their 

conventional, pathogenic-free counterparts. More specifically, germ-free mice show a number of 

brain differences when compared to conventional mice, such as a significantly increased brain 

volume, decreased integrity of the blood brain barrier, increased serotonin synthesis, and 

increased myelination (Heijtz et al., 2011; Neufeld, Kang, Bienenstock, & Foster, 2011). 

Furthermore, a series of studies have shown that, compared to conventional mice, germ-free 
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mice display significantly reduced levels of anxiety-like behaviors resulting in increased risk-

taking behaviors, such as increased open field exploration (De Palma et al., 2015; Hsiao et al., 

2013).  

The use of the germ-free animal model has illustrated the importance of the microbiome 

in psychobiological development. Specifically, the microbiome has been implicated in 

behavioral responses to early life stress. For example, germ-free mice but not pathogen-free 

control mice exhibit reduced species-typical anxiety-like behaviors in response to maternal 

separation (De Palma et al., 2015). This lack of anxiety seen in germ-free mice is thought to 

represent an aberrant response to the real-life threat of maternal separation. Moreover, the germ-

free animal model has been used to study psychobiological effects of particular bacterial genera 

through administration during key phases during development. For example, Sudo and 

colleagues (2004) found that germ-free mice had increased release of corticosterone in response 

to an acute restraint stressor when compared to specific pathogen-free control mice. This study 

further showed that, in the germ-free mice, the HPA-axis response returned to normal levels after 

administration of Bifidobacterium infantis, whereas administration with Escherichia coli was 

associated with hyperactivity of the HPA axis. Critically, Sudo and colleagues also found that 

when during postnatal development administration occurred played an important role. In 

particular, this study showed that the administration of Bifidobacterium infantis was only able to 

return HPA axis activity to normal levels if administered to the mouse pups by six weeks (prior 

to sexual maturity) but not later during development (at eight weeks of age; the onset of sexual 

maturity). This research thus points to the possibility that there might be a sensitive period, prior 

to adolescence, when the microbiome may have the greatest impact on the development of the 
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stress system. Considering this kind of evidence it appears important to systematically 

investigate the role of the gut-brain axis in early psychobiological development. 

Evidence for gut-brain axis in human models 

Preliminary evidence for the existence of the gut-brain axis in humans comes from 

correlational studies, showing that delivery method and breastfeeding influences the colonization 

of the gut with bacteria. These differential patterns in colonization may in turn, have downstream 

effects on psychological development. For example, vaginal birth has been shown to expose 

infants to a larger diversity of bacteria in the birth canal than seen in infants delivered by 

caesarean section, who predominately receive bacteria from their mothers' skin (Dominguez-

Bello et al., 2010). Feeding method also appears to be a contributor to the type and diversity of 

bacteria that inhabit the infant gut. For instance, breastfeeding provides infants with both bacteria 

and prebiotics, or nutrients that support bacterial growth, leading to a larger number of keystone 

(health-promoting) bacteria in breastfed when compared to formula-fed infants (Heikkilä & 

Saris, 2003). 

It is important to emphasize that direct causal links between gut bacteria, brain, and 

cognitive development have not yet been established in humans. Nonetheless, there is 

correlational evidence from epidemiological studies suggesting that delivery method and 

breastfeeding, which as outlined above affect changes in the microbiome, also impact brain and 

cognitive development in infants. A recent meta-analysis found that infants delivered by 

cesarean section, when compared to those delivered vaginally, show a modest increase in the risk 

of developing Autism Spectrum Disorder (ASD) and Attention Deficit/Hyperactivity Disorder 

(ADHD) (Curran et al., 2015). Similarly, in animal models, mice that are born through cesarean 

section when compared to mice delivered vaginally, display increased repetitive behaviors and 
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atypical social behaviors, characteristic of these neurodevelopmental disorders (Borre et al., 

2014). Moreover, this is in line with the human studies showing differences in bacteria 

composition between children with ASD when compared to neurotypical children. Specifically, 

children with ASD show distinct patterns of broad classes of bacteria composition with an 

increase in some toxin-producing bacteria, such as Clostridia (Finegold et al., 2002; Parracho, 

Bingham, Gibson, & McCartney, 2005). However, research concerning ASD is inconsistent 

because other bacteria genera, such as Bacteriodetes, are reported as increased prevalence in 

ASD children one study and not increased in another study (Son et al., 2015; Tomova et al., 

2015).   

Breastfeeding, in addition to affecting the colonization of the infant gut with microbes, 

has also been shown to impact brain and cognitive development in infants (see Krol & 

Grossmann, 2018, for a review). Specifically, there is evidence suggesting that the absence or 

short duration of exclusive breastfeeding might be associated with the development of ASD. For 

example, a recent meta-analysis reports that those children diagnosed with ASD were 

significantly less likely to have been breastfed when compared to typically developing children 

(Tseng et al., 2017).  

These associations seen between delivery and feeding experiences among infants and 

developmental outcomes obviously do not provide direct evidence that the microbiome is 

influencing brain and cognitive development. Moreover, there could be a host of alternative 

explanations for these results, one being that both breastfeeding and delivery method may impact 

the development of the oxytocin system; and consequently, the neurohormone oxytocin has been 

linked to various outcomes in social behavior (Carter, 2014). Nonetheless, given that changes in 

the microbiome are associated with breastfeeding and vaginal birth, it is likely that the associated 



 
 
 
Running head: MICROBIOME AND BRAIN DEVELOPMENT                                                         8                                                                      

 

microbiome changes are relevant to psychological development in infancy and beyond. 

Developmental work, which directly assesses the role of the microbiome in early brain and 

cognitive development, is needed to arrive at a more mechanistic understanding of how the gut-

brain axis functions in early development. 

Direct assessment of how the human gut microbiome impacts cognitive development in 

infancy  

To date, there is very little work in humans that has directly assessed the relation between 

the gut microbiome and early brain and cognitive development. Only very recently, Carlson and 

colleagues (2018) took a first step by assessing gut microbiome composition at 1 year of age, and 

testing the association with cognitive and motor development (measured by the Mullen Scales of 

Early Learning), and with brain volume (measured using structural Magnetic Resonance Imaging 

[MRI]), at both 1 and 2 years of age. This study characterized the gut microbiome composition in 

two ways: 1) using the mean bacteria species diversity per individual (alpha diversity) and 2) 

using cluster analysis, which identified three major groupings across infant microbial 

composition based on differences in the abundance of three key bacteria genera 

Faecalibacterium, Bacterioides, and Ruminococcacea (grouped with unclassified genera). 

Carlson et al.’s (2018) study shows that infants’ overall score on cognitive and motor 

development tasks, the Early Learning Composite Score, differed significantly between the three 

groups. Specifically, infants with a relatively high abundance of Bacterioides achieved the 

highest score, whereas infants with a relatively high abundance of Faecalibacterium showed the 

lowest score with respect to their cognitive and motor development. Moreover, findings revealed 

that when the analysis was focused on specific subscales of the Mullen Scales of Early Learning, 

the difference across groups was most prominent with respect to their receptive language scores. 
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In addition, Carlson et al. (2018) report structural brain differences, whereby infants in the group 

with a relatively high abundance of Bacterioides showed a larger right superior occipital gyrus at 

age one but smaller caudate nucleus when compared to infants in the other two groups. On the 

one hand this study suggests that there are some specific structural brain differences; however, it 

should be noted that the majority of structural brain measures such as intracranial volume, total 

white or gray matter, total cerebrospinal fluid, or lateral ventricle volume did not reveal any 

differences between infants in the different bacterial composition groups. Moreover, from these 

data it is unclear how these differences in brain structure are linked to brain and cognitive 

function.  

 Carlson et al.’s (2018) study also showed that gut microbial diversity at the age of one 

year predicted cognitive development at the age of two years. The longitudinal association found 

in this study was such that increased microbial diversity was associated with lower cognitive 

performance as measured in the Early Learning Composite Score and lower scores on the 

specific subscales of visual reception and expressive language. This finding is surprising 

considering that higher microbial diversity in adults has typically be shown to be predictive of 

positive health outcomes (Abrahamsson et al., 2014; Kostic et al., 2015). Carlson and colleagues 

(2018) suggest that microbial diversity may affect cognitive functions differently in infancy than 

later in development. This points to the importance of developmental research which maps 

associations between microbial characteristics and brain and cognitive development across the 

human lifespan. In the following, we would like to briefly outline how researchers may use new 

methodological and statistical approaches to explore the influence of the microbiome on brain 

and cognitive development. 

Generating microbiome data 
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 After reviewing existing research on the role that the microbiome may play in brain and 

cognitive development, this section of the review will discuss sampling, data collection, and 

genomic sequencing of microbiome data for use in psychobiological research. Here, we outline 

how the microbiome is collected, sequenced, and processed in a data stream to address questions 

about composition and function of microbes.  

Collecting microbiome data  

 There are several methods for collecting microbiome samples from study participants. 

The two major collection methods for assessing the microbiome of the distal gastrointestinal 

tract, a proxy for understanding the community structure of the gut, are rectal swabbing and 

collection of a stool/fecal samples. A rectal sample includes the participant utilizing a small q-tip 

swab after a recent bowel movement to collect the microbiota that are more focused at the 

rectum. Participants should insert the swab approximately 1-2 centimeters beyond the rectum for 

optimum collection (Bassis et al, 2017). For fecal samples, sterilized containers with small 

scoops should be used for cleanliness. Tools, such as toilet inserts to catch samples, can help 

participants to feel comfortable with collection. Moreover, infant researchers may ask parents to 

bring in a diaper (note, researchers may choose to provide a sterile plastic insert to parents to put 

into the diapers to optimize collection) and transfer the sample from the diaper to a storage 

container in the lab. Both fecal samples and swabs should be labeled appropriately with date and 

time of collection and study identification number. In the interest of gathering more robust data 

for fecal samples, charts such as the Bristol Stool chart (BSC) can be used to allow participants 

to classify their sample into 7 distinct types illustrated by representative pictures of various 

textures and consistencies. Classification of the types using the BSC, including amount and 

consistency, is important because early research has identified stool consistency being associated 
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with gut microbiota richness and composition (Vandeputte et al, 2016). Complete sampling kits, 

with all the necessary materials, are available for purchase from a wide range of medical and 

research distributors. Both methods, including swabs or fecal samples, should be considered for 

research and the specific method should be selected on the basis of participant population (e.g, 

for infants, fecal samples may be easier to collect and may have higher compliance from families 

as compared to swabs), resources available to data collection team, and consultation with the 

data sequencers. 

 After collection, storage options can vary depending on study question and availability. 

Options include liquid buffers to help stabilize samples and long-term freezing (typically in 

temperatures ranging from -80 to -4 degrees celsius). Most importantly, consideration should be 

used when freezing and thawing samples as this could have an effect on bacterial growth and/or 

DNA damage (Hugerth & Andersson, 2017). With the expansion of large-scale cohort studies 

and biospecimen banking, long-term freezing is common to ensure sample availability for future 

research. A recent comparison study found that these storage methods, including freezing 

temperature and stabilizing agents, can be used interchangeably with similar diversity metrics 

(Bassis et al, 2017). However, for consistency, studies should utilize the same technique for all 

samples. 

Sequencing microbiome and processing samples 

 A gut microbiome sample, either a stool sample or a rectal swab, can be sequenced in two 

major protocols that result in different types of output data. The first and most common method 

to studying taxonomy and phylogeny of the microbiome, due to cost and efficiency, is 16s RNA 

sequencing (Janda & Abbott, 2007). In this method, short strands of DNA called primers, which 

are designed to target specific variable regions of the 16s ribosomal RNA gene, are used to 



 
 
 
Running head: MICROBIOME AND BRAIN DEVELOPMENT                                                         12                                                                      

 

classify taxonomic units of microbiota within a sample (Illumina, 2018). The 16s RNA gene is 

highly conserved, or passed through generations, and acts as a microbe-specific genetic 

signature. The protocol begins with purified DNA from the fecal samples (Illumina, 2018). 

Primers are tagged with indexing barcodes and samples are pooled into a single library, or a 

collection of the primer nucleic acid targets, for sequencing (Illumina, 2018). Taxonomic 

profiling on the Illumina MiSeq system, a type of popular sequencing equipment and the 

industry standard platform, is typically cycled to generate paired 250-base pair reads in each 

protocol (Illumina, 2018). Other platforms include the Roche 454 GS FLX and the Ion Torrent 

PGM which both include different library preparations, procedures for barcodes and adapters as 

well as amplification (Allali et al, 2017). A recent study found that microbiome community 

profiles were comparable across platforms but that the relative abundance of specific microbiota 

varied depending on the sequencing platform, library preparation procedures, and analytic 

approach (Allali et al, 2017). However, the longer read lengths provided by the Illumina platform 

offer a high-quality analysis of the rRNA gene to ensure the most accurate classification 

available. Additionally, because chimeric sequences, sequences originating from two transcripts, 

and mismatched primers are considered to be contaminant within the analysis, they are filtered 

out using the standard Human Microbiome Project search and clustering program, USEARCH 

(Shaw et al, 2017).  Raw sequence data in the form of fastq files are the output product of this 

processing pipeline, which can then be entered for further analysis. 

Once the sequencing is completed, 16S rRNA gene sequence data in the form of fastq 

will be input into the Quantitative Insights Into Microbial Ecology (QIIME) 1.8.0 software 

package (Caporaso et al., 2010). QIIME is a big data, open-source software built for microbiome 

analysis from raw fasq sequencing data on Illumina platforms. QIIME groups the genomic 
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sequence into operational taxonomic units (OTUs). OTUs are groups of similar 16s sequences 

that become proxies for a species of a microbe (Caporaso et al., 2010). OTUs group the genomic 

sequences to identify which taxonomic group it belongs to. Genome reference databases such as 

Green Genes should be used to provide standardization of OTU assignment with publically 

available and published taxonomies (DeSantis et al., 2006). In addition to QIIME, several other 

bioinformatics packages are available including mothur and MetaGenome Rapid Annotation 

using Subsystem Technology (MG-RAST). Both MG-RAST and mothur offer a comparable data 

processing pipeline for 16s microbial comparisons. Another recent bioinformatic comparison 

study found that researchers arrived at largely comparable results regardless of which of the three 

existing pipelines were used (Plummer et al, 2015). It is worth noting that the main difference 

revealed by the pipeline comparison carried out in this study was the significantly increased 

computational speed for QIIME compared to mothur and MG-RAST, taking approximately 1 

hour, 10 hours, and 2 days respectively for processing a sample of 35 specimens (Plummer et al, 

2015). Similar to the sequencing methods, for the purposes of this primer, the focus will be on 

processing with QIIME due to its widespread use.  

From QIIME, data can be read into R to be manipulated using a package called 

‘phyleoseq’. A full microbial analysis workflow is provided open access through Bioconductor 

(Callahan et al, 2016). Bioconductor in R is the most common package for bioinformatic analysis 

with inclusion of packages such as ‘dada2’, ‘phyloseq’, ‘DESeq2’, ‘ggplot2’ and ‘vegan’ to 

normalize, visualize, test, and compare microbial data samples. At this point, questions about 

community analysis, including which microbes are present and how do they compare in 

abundance to others, can be elucidated. 
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SixteenS rRNA sequencing is not the only method for extracting valuable insight from 

microbiome data. Metagenomic sequencing, also known as shotgun metagenomics, uses next-

generation sequencing technology to understand functional gene composition rather than just 

viewing the 16s RNA conserved gene (Thomas et al., 2012). The sequence pathway begins with 

extracting DNA from the fecal samples similar to 16s. By sequencing the community DNA and 

comparing it to reference gene catalogs, metagenomics offers improved precision and allows for 

genetic observation of variants such as single nucleotide polymorphisms (Morgan & 

Huttenhower, 2012). Function can then be assessed and assigned using other publicly-available 

databases like the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (Kanehisa et al, 

2008). The ability to sequence the entire genome comes at a significant expense, which may 

double the costs of 16S sequencing. With the additional cost and expertise comes the ability to 

generate more data to elucidate information on not only community structure and prevalence of 

microbiota but also on the function of the microbes present (Sharpton, 2014). Metagenomic 

profiling can offer answers to questions of not only ‘what microbiota are present?’ but also ‘what 

can the community do?’. For the purposes of this primer, we have outlined methodologies to 

approach microbiome research through the cost-effective and widespread use of 16S sequencing.  

Outlining the process of microbiome collection, sequencing, and the bioinformatics 

pathway for the raw data analysis as done here in brief is important in preparing microbiome data 

to be used in a research study. Once the taxonomic data, including which species of bacteria are 

present within the samples, has been identified, further data analysis can be pursued to answer 

questions of developmental and clinical relevance. 

Analysis using data science methods to analyze the human microbiome 
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 In the following section, we will discuss suitable research data science methods including 

machine learning, data mining, and deep learning that can be applied to explore heterogeneous 

microbiome data sets. The introduction of such analysis techniques to study the role of the 

microbiome in human development has the potential to capture the complexity, allow for 

relatively unbiased statistical inferences, generate testable predictions, and ultimately, may result 

in clinical applications. 

Traditional approaches and correlational statistics 

 The primary output from microbiome sequencing processing is counts of genomic reads 

that are taxonomically assigned to specific microbiota through reference genome sets. This count 

data is often normalized or processed additionally to remove systematic variance in the data. The 

count data is then considered for each microbiota in terms of its abundance within a certain 

feature, in the case of 16S sequencing it is in terms of the taxonomic classification. The counts 

for each classification are typically reported as proportions, which reflect fractions of specific 

species rather than absolute abundances (Lovell et al, 2015). Unfortunately, these proportions are 

difficult to predict and interpret in relation to the absolute abundance and confounding factors 

within an environment (Gloor et al, 2017; Friedman et al, 2012). This is a particularly 

challenging problem for the investigation of maternal microbiome samples because of the known 

community and diversity changes in pregnancy related to hormonal fluctuations, which occur 

independently from microbial dysbiosis or pathology. 

 More than just understanding the role of read counts as data output and microbiota 

proportions, there are several other traditional methods that should be reconsidered as the science 

moves toward understanding more than just community composition. One particular issue is the 

reliance on proportions as the major data analytic method when analyzing microbiome data -- 
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this results in the assumption that abundance, or relative low abundance, is the key driver for 

functional differences. In addition, many standard statistical approaches assume an independence 

between microbiota, which does not exist (see Xia & Sun, 2017).  

Data mining 

As an overarching method comprised of several approaches in data science, data mining 

has become a popular computing and statistical process to discover patterns in large, mixed 

source datasets (Hendler, 2014). Data mining helps to explore information in large datasets 

where patterns emerge, which cannot be adequately captured by traditional linear regression 

models because of the highly non-linear complexity present within the data (Zhang & Zaki, 

2006). We will now briefly describe some of the existing data mining techniques and in turn 

discuss the use of simulated data, time analysis, and clustering.  

Simulated data. Simulated data is a particularly powerful data mining technique when 

applied prior to large-scale, cost-intensive experimental studies as it can help formalize 

conceptual models that can then be tested empirically. Step-by-step workflows are available to 

assist researchers in creating simulated data for specific purposes (Hallgren, 2013). Available 

coding software, such as R and python, can be used to simulate data according to a formalized 

model before investing in large-scale experimental studies. Implementation of simulated data in 

the context of a relevant research questions can help with answering specific questions in model 

building, estimation of beta coefficients, and better tuning of parameters of machine learning 

algorithms such as gamma values or learning rates (Schloss, 2008; Chen, 2012). For example, 

simulations of what parameters of the microbiome in an animal model (mouse) impact a given 

outcome such as social behaviors seen in ASD, could be used to help design experimental studies 

with humans. The largest limitation of this method is that the use of simulated data critically 
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relies on prior information, which is needed to build a simulation model. Considering that, apart 

from animal models, very little prior information is available in human translational research 

limiting the utility of this technique until more literature is published in this area.   

Time Analysis. Previous research in humans and model organisms have predominately 

collected and analyzed microbial data cross-sectionally (Caporaso et al, 2010; Parks et al., 2014; 

Fukuyama et al., 2017). However, in order to arrive at a mechanistic understanding of microbial 

influence on outcome variables, it is of critical importance to understand how microbial patterns 

change in development and in response to certain events or interventions (Faust, et al., 2015), 

making longitudinal research designs the method of choice for fostering such an understanding 

(Morgan & Huttenhower, 2012). For example, an important unanswered question is how does 

the human microbiome change due to feeding and mode of delivery,  and whether and how do 

these changes in the microbiome predict brain and cognitive development in children. New 

computational tools (software packages) have emerged to help visualize microbial time-series 

data, which can also be applied to longitudinal data. One such application is Temporal Insights 

into Microbial Ecology (TIME), a web-based software for longitudinal microbiome data 

analysis, offering a wide range of input data types and capability to identify potential taxonomic 

markers through analysis and visualization (Baksi, Kuntal, & Mande, 2018). Another web-based 

software tool is called BURRITO (https://github.com/borenstein-lab/burrito), which also offers 

time-series based visualization and analysis, coupled with taxonomic and functional profiling to 

elucidate the contribution of the microbiota to a biological function such as neurotransmitter 

transport, GABA-A receptor agonists/antagonists or systemic inflammatory responses (McNally, 

Eng, Noecker, Gagne-Maynard & Borenstein, 2018; Kanehisa et al, 2008). Applying these 
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methods to longitudinal data promises to innovatively capture and visualize the link between 

microbial and developmental changes. 

Clustering. Clustering is a common technique to describe the proximity between subjects 

or samples (Cameron, 2012). Interestingly, centroid-based clustering algorithms, such as k-

means using euclidean distance metrics, which group samples based on distance to the computed 

centroid, have shown to perform well on clinical and simulated microbial datasets (Cameron, 

2012). Beyond distanced-based clustering algorithms, other data science methods are also able to 

account for complex biological data. For example, hierarchical clustering, which is a set of 

descriptive techniques used for grouping by similarity, has been particularly useful when applied 

to metagenomic data (McMurdie, 2016). Clustering algorithms may help researchers to profile 

similarity across microbiome samples and identify boundaries based on function, and thus help 

uncover clusters of microbes that best characterize any given developmental outcome. 

Machine learning 

 For developmental, psychological, and clinical researchers, machine learning algorithms 

have been proposed to be effective in addressing questions concerning classification and 

prediction of biological and behavioral variables (Yarkoni & Westfall, 2017). Large datasets can 

be used to train models to answer classification problems or provide probabilities of an outcome. 

This section outlines some techniques for machine learning and areas for exploration in this new 

domain that focuses on prediction rather than description. 

Reduction of Features. Feature reduction methods are extremely important in high-

dimensional datasets. One widely used technique in microbial analysis to achieve a reduction in 

relevant features is Principal Component Analysis (PCA), which uses orthogonal transformation 

to reduce features and create a smaller set of components (Meng, Zeleznik, Thallinger, Kuster, 



 
 
 
Running head: MICROBIOME AND BRAIN DEVELOPMENT                                                         19                                                                      

 

Gholami et al, 2016). PCA relies on linear methodologies which may not best describe the 

underlying truth. However, feature reduction can also be harnessed through neural networks 

using autoencoders, which provide a neural network structure for unsupervised learning of 

encoded nodes (Tan, Hammon, Hogan & Greene, 2015). The encoded nodes represent a 

component of the original data. Tools such as the Analysis Using Denoising Autoencoders of 

Gene Expression (ADAGE), allow researchers to train an autoencoder on a dataset to derive 

nodes thereby reduce features to highlight highly-active genes (Tan et al., 2015). Autoencoding 

is particularly relevant in datasets with a large number of participants and a wide range of 

behavioral and brain measurements. From a data science perspective, high dimensional problems 

arising from such data sets are thought to be best addressed using autoenconding methods. 

Classification. In terms of classification, random forest models tend to be popular 

because they have been proven to be high in their prediction accuracy (Touw et al, 2012). 

Identifying conditional relations, such as the presence or absence of a certain microbes accounts 

for the presence or absence of certain outcomes, are prime purpose for using random forest 

modeling. Random forest models are supervised learning algorithms that generate decision trees 

allowing for classification on the basis of deterministic rather than random relations between a 

certain microbe and an outcome variable (Touw et al, 2012). Random forest models can be thus 

be used to better characterize which microbial species or Operational Taxonomic Units (OTUs) 

are most important for a particular classification task. This could include a classification 

problems in cognitive and brain development of clinical relevance such as the diagnosis of ASD. 

This can be implemented in the data processing stream through packages available in R such as 

‘randomForest’ to be used in conjunction with ‘phyloseq’, which allows for the general analysis 

and visualization of microbial communities.  
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Deep Learning. Due to the known complexity of microbiome and developmental data, 

other data science methods are needed to further pinpoint health or disease-relevant outcomes. 

Deep learning is a collection of machine learning methods that are designed to carry out non-

linear algorithms in an artificial neural network. Similar to autoencoders, alluded to above, deep 

learning methods make use of multiple connected layers in which output from the previous layer 

is employed to denoise and reconstruct the original data, while unveiling nodes, or 

representations of the data. Importantly, deep learning is generally considered as one of the most 

rigorous data science methods also due to its unbiased (and non-linear) nature of capturing 

patterns in complex data sets. Deep learning can be applied to both OTU or metagenomic data 

and is typically implemented through python-based software packages such as Keras and 

Tensorflow, but it can also be realized in R. 

Taken together, this brief summary of some of the available data science practices is 

intended to provide a general guide for what analysis strategies might be useful in studying 

microbiome effects on brain and cognitive development. The review of the data science practices 

presented here is by no means exhaustive. Moreover, to date, there is no standardized procedure 

or platform available that integrates across these data science practices, and it is important to 

emphasize that the exact data science-based approach to be employed has to be specifically 

tailored to the particular research questions being addressed.   

Conclusion 

 The growing body of research reviewed here provides first insights into how the gut 

microbiome influences early brain and cognitive development. We have seen that incorporating 

information regarding the gut microbiome into psychobiological research promises to further our 

understanding of how individual differences in brain and cognitive development emerge. While 
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the investigation of the gut-brain axis in development is still in its infancy, we have argued that 

an approach using data science methods has the potential to help us make progress in describing 

and predicting how the gut microbiome, as an eco-system containing millions of bacteria, 

influences brain and cognitive development. Applying data science methods including machine 

learning, data mining, and deep learning to mixed methods microbiome data sets will advance 

the study of the gut-brain axis in early human development. By summarizing some basic 

principles in microbiome analysis, data analytics and its application to brain and cognitive 

development, this review is meant to offer a brief introduction into this new frontier in 

developmental psychobiology. This is done in the hope that this review will help inspire the bold 

research efforts needed in the coming years to realize advances in our understanding of the 

microbiome’s role in development.  
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